
SOLUTION OF THE INVERSE BOUNDARY-VALUE PROBLEM OF 

HEAT CONDUCTION IN AN OVERDEFINED FORMULATION 

O. M. Alifanov and V. V. Mikhailov UDC 536.24.02 

An interaction scheme is considered for the solution of a nonlinear inverse heat- 
conduction problem with the results of measuring the temperature at an arbitrary 
number of points within the body taken into account. 

In solving inverse heat-conduction problems (IHCP), formulations of the IHCP with the 
least number of temperature sensors needed from which the information will assure uniqueness 
of the solution of the problem are distinguished from overdefined formulations when the num- 
ber of temperature sensors installed is greater than is required from the uniqueness condi- 
tion. Installation of additional sensors permits more complete information to be obtained 
about the thermal state of the body and the error in determining the temperatures and thermal 
fluxes on its surface from the solution of the IHCP to be reduced. It is here expedient to 
use an extremal form of the problem with an iterative principle for regularization of the 
solution [i]. 

Let us consider a boundary-value inverse heat-conduction problem for an infinite plate 
with moving boundaries within which n temperature sensors are placed at different distances 
x = Xi(z), i = i, n from the boundary Xo(T), where the results of their measurements f.(T),1 

i = i, n are the experimental dependences: 
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w h e r e  C(T), %(T), r q~(~), fi(~), i = 1, n, Xi(x), i O,  n a r e  known f u n c t i o n s .  

Determine the heat flux density qo(T) and the temperature field in the plate. 

For convenience in the numerical realization, the problem is solved in a coordinate 
system coupled to the moving boundaries Xi (T) - - t  =T, zi=[x--Xi-l(~)]/[Xi(T)--Xii l(T)],  i :  1, n~ 
hence (1)-(5) become 
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-&- - t~ (0 az~ az~ ] + ~ (t) + az, 

- - ,  O < z i <  1, i =  1, n, t > O ,  (6) 
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T i(zi ,  O) = ~i(zi) ,  O<~z i<~ 1, i : 1, n, 
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_ ~_(T) aT,  (o, t) 
- qo (t), (8)  l~ (t) Oh 

L(T) OT~(I, t) 
l . ( t )  8z.  - -  = q~(t), (9)  

T i(1, t ) = T  *+ ' (0 ,  t), i =  1, n - -  1, (i0) 

1 oU(1, t) = t aTe+t (0 ,  t) , i =  1, n - -  1, (11) 
l i (t) azi li+ x (t) OZi+ x 

r ~ (1, t) = f, (t), i = 1, n----~ (12)  

where li (t) : :  X i (t) -- X~_~ (t), ii (t) = dl, (t)ldt. 

The desired function qo(t) is determined from the requirement of a minimum of the rms 
residual 

l ~ tp 

J(qo) = T ~  j" IT'(l, tl--f,(t)]'dl. 
i ~ l  0 

(13) 

The search for the solution of IHCP is performed by the scheme of the method of conjugate 
gradients in which the gradient of the functional (13) is evaluated by a formula based on 
the solution of the boundary-value problem adjoint to the problem (6)-(11). 

Considering qo(t) as a certain control function minimizing functional (13), by follow- 
ing the methodology elucidated in [2], the equation of this problem can be written as 

O~' 02 
a ~ -  == az---~ (A'W) a (B~T~) -k D~ ', 

azi (14) 

O < z ~ <  l, O < ~ t < t p ,  i :  1, n, 

tg*(zl, t ;)  - - 0 ,  0 ~ z , ~ <  1, i = 1, n, 
(15) 

[ a)J(o, t)| ~,(o, t)-F t)~(o, t)l = O, (16) 
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where 

A ~ (z,, t) = ~ (zi, * O/C (z~, 0/# (t), ~' (z~, t) = I2 
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D ~ (z~, t) = [ Oz~Oz~(zi' t) -F dCiozi (zi' t). ("~i-1 + zili) li (t) OC t (zi, t) 
Ot ] /  c* ( z*, t)/t  (t), 

and the formula to compute the gradient also is 

j~ ,_  A'(0, t) T~(0, t) l~(t). 
~ (0, t) 

(20) 

In computing the gradient by means of (20), the error in the solution of the IHCP will 
be determined to a significant degree by the selection of the initial approximation. In 
this connection, a formula is used in the search scheme to compute the gradient relative to 
the first derivative of the thermal flux density with respect to the time [1-3]: 

tp (21)  
A i (0, 1:) ~ i  (0, "~) lt('0 d~, s i .  = 

where qo = dqo/dt. 

The iteration scheme of the conjugate gradients method is here written in the form 

q%+' (t)  = (t) - (t) ,  s = o ,  

t 

1, 2 . . . . .  rS(t) =: q~ q- S P~('~) d'~, 
0 

pS (t) = - -  j:sq. + ~s p~-~ (t), ~ - (Jqo:~ --  J:*-qo" Ji~.)/(Ji U ' '  J:ao~- ')' [5~ = O, 

(22) 

where q~ is a known initial approximation. 

The thermal flux density at the initial time q~ is assumed known. 

The magnitude of the step a in going from the s-th to the (s + l)-th approximation is found from 

the condition min J(q~ -- ~rS). Using a linear estimate of functional (13) in the (s + l)-th 

iteration 

I n tp I n tp 
j(q~+l) =.._~_~ ~ [T~(1, t, q~ - -  =rS) - -  ' i  (x)] zdt =---~-~ j ' [Ti( ' ,  t, q~)--a@i(1, t, rS)--[ , ( t )]2dt ,  (23, 

6 

where ~(I, t, rs),i=l, n are the temperature variations due to variations in the thermal flux 

density r s, an effective procedure for determining a can be constructed. In this case the 

formula to estimate the magnitude of the step is written down from the condition of station- 
arity of the functional (23) in a: 

n tp 
J'[Ti(l, t, q~o).-[: i ( t )]e~(l ,  t, r~)dt 

i=I o (24) 
n tp 

S [~ (1, t, rs)]Zdt 
i~I0 

The equations of the boundary-value problem in the computation of @i(z~, l ) , i = l ,  n, for the IHCP 

formulation under consideration are written analogously to the equation in [2]. 

In conformity with the above, a computational algorithm was developed. 

To estimate the influence of the number of temperature measurement points on the con- 
vergence of the algorithm and on the accuracy of determining the boundary condition, compu- 
tations of a number of methodological examples were performed. The exact data on the tempera- 
tures at the plate inner points were here obtained by solving the direct heat-conduction 
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Fig. i. Change in the error of determining the thermal 
flux density (a) and the surface temperature (b) as the 
number of the iteration changes for the case of perturbed 
initial data: i) one temperature sensor; 2) two; 3) 
three; 4) four. 

TABLE i. Dependence of the Errors in Determining 
the Boundary Functions on the Number of Sensors 

No. o f  
sensors 

t = l  

0,058 
0,058 
0,058 
0,058 
0,058 
0,058 

Sensor  loca t ion  coord ina tes  [ 

X-i=Xi/(at p) I / 2 I eq 

i=5 i~6 i=~2 i = 3  

0/16 -- _ _  
0, 116 0,232 
0,116 0,232 
0,116 0,232 
0,116 0,232 

i = 4  

o,T48 
0,348 
0,348 

o~-64 
O, 464 o~8 

0 , 1 4 0  
0,056 
0,039 
0,025 
0,015 
0,016 

eT 

0,045 
0,011 
0,009 
0,006  
0,003 
0,004 

problem with given boundary conditions. Then the time dependences of the temperature at a 
number of inner points were used as input information for the solution of the IHCP on find- 
ing the now unknown flux density q o(t) (and the surface temperature TI(0, t) simultaneously). 
Such an approach permits execution of a direct comparison between the known thermal flux den- 
sity and its values obtained by solving the inverse problem. 

The errors in determining the boundary functions, the thermal flux density q and the 
surface temperature T, were here estimated from the formula 

tp ~ tp 
/ s 

�9 0 0 

where y(t) is the exact dependence and y(t) is the dependence obtained from the solution of 
the inverse problem. 

Data on the change in the errors mentioned as a function of the number of temperature 
sensors whose measurement results were taken into account in solving the IHCP are repre- 
sented in Table I. The number of iterations was here limited to a number equal to the 
number of nodes for the discrete representation of the desired function qo(t) (l = 50). 
These data permit indirect estimation of the change in the rate of convergence of the al- 
gorithm as the number of sensors changes. 

Moreover, the influence of the number of temperature sensors was estimated for the 
limited accuracy of the temperature measurements. Random errors were modeled by using 
random sensors. Uniform and normal distribution laws were hence simulated. 

As an illustration, the change in the errors s and e T during an iterative search for 
q 

the solution of the inverse problem is shown in the figure for a normal distribution law 
for a different number of temperature sensors. The maximal error in the temperature 
measurement is here 5% of fmax(t). 

1 
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The results of the computations performed showed that an increase in the number of tem- 
perature sensors results not only in a rise in the rate of convergence of the algorithm but 
also in a rise in the stability to perturbations in the initial data. 

In conclusion, it must be noted that the scheme considered above for n ~ 2 can be used 
to determine the boundary conditions on both boundaries. To do this, it is just necessary 
to write down the formula for Jl . 

qn 
NOTATION 

n, number of temperature measurement points; T, t, time; Tp, tp, length of the time in- 

terval; x, a space coordinate; Xi(t) , i = i, n, coordinates of the temperature measurement 

points; T(x, t), temperature; C(T), bulk specific heat of the material; I(T), coefficient 

of material heat conduction; T(x, 0), initial temperature distribution; q, heat flux density; 

fi(t) i = i, n, temperature measurement; ~l(zi, t) i = I, n, conjugate variable; @ i(z i t) 

i = i, n, temperature variation; ~, B, P, parameters of the conjugate gradient method; s, 

number of iteration; l, number of points in a discrete representation of the time function; 

~, an error estimate. 
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